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The analysis of parent-child interactions is crucial for the understanding of early human

development. Manual coding of interactions is a time-consuming task, which is a

limitation in many projects. This becomes especially demanding if a frame-by-frame

categorization of movement needs to be achieved. To overcome this, we present a

computational approach for studying movement coupling in natural settings, which is a

combination of a state-of-the-art automatic tracker, Tracking-Learning-Detection (TLD),

and nonlinear time-series analysis, Cross-Recurrence Quantification Analysis (CRQA).

We investigated the use of TLD to extract and automatically classify movement of

each partner from 21 video recordings of interactions, where 5.5-month-old infants and

mothers engaged in free play in laboratory settings. As a proof of concept, we focused

on those face-to-face episodes, where the mother animated an object in front of the

infant, in order to measure the coordination between the infants’ head movement and

the mothers’ hand movement. We also tested the feasibility of using such movement

data to study behavioral coupling between partners with CRQA. We demonstrate that

movement can be extracted automatically from standard definition video recordings and

used in subsequent CRQA to quantify the coupling between movement of the parent and

the infant. Finally, we assess the quality of this coupling using an extension of CRQA called

anisotropic CRQA and show asymmetric dynamics between the movement of the parent

and the infant. When combined these methods allow automatic coding and classification

of behaviors, which results in a more efficient manner of analyzing movements than

manual coding.

Keywords: parent-child interactions, infant, automatic movement extraction, recurrence quantification analysis

(RQA), tracking-learning-detection (TLD)
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INTRODUCTION

The analysis of parent-child interactions (PCI) is crucial for
the understanding of early human development (e.g., Sameroff
and Fiese, 2000; Bronfenbrenner and Morris, 2006; Schaffer,
2009). In the course of PCI, both partners must coordinate
their behaviors (such as vocalizations, eye gaze and movement).
Even when considering the interactions with young infants the
key characteristics of this coordination are timing (e.g., Jasnow
et al., 1988; Hane et al., 2003) and synchrony in relation to each
other’s behaviors (e.g., Feldman, 2007). Optimally, caregivers
adjust their behaviors (modality, timing, form and content) to
the behaviors of the infant to meet their needs. Infants, in turn,
are very sensitive to interpersonal contingencies (e.g., Murray
and Trevarthen, 1985; Goldstein et al., 2003) and easily learn
the causal relations between their own actions and consequences
of these actions (Rochat and Striano, 1998). During the first
year of life infants greatly improve their motor (e.g., Rochat,
1992; Rocha et al., 2012) and attention control (e.g., Johnson,
1990, 1994; Elsabbagh et al., 2013). They also learn to coordinate
various social behaviors in different modalities (e.g., gaze and
the expression of affect, Yale et al., 2003; Lavelli and Fogel,
2005). Finally, toward the end of the first year, infants begin
to coordinate the focus of their attention in relation to the
attention of their parents (Butterworth, 2006;Mundy andNewell,
2007). With the growing role of the infant in shaping the
interactions during the first year of life, parents and infants in
various everyday situations gradually improve their coordination
(Rączaszek-Leonardi et al., 2013).

In developmental psychology the study of infant-parent
interactions has relied predominantly on laborious, manual
coding of individual behaviors, especially in microanalytic
approaches to interactions (see e.g., Feldman, 2007). Coding
interactions from video recordings is one of the most time-
consuming and costly tasks in infancy research, taking up to
10 times the length of a video (Lasecki et al., 2014), which is a
limitation in many projects. Additionally, finding a finite set of
well-defined categories of behaviors and attaining high interrater
reliability is often very difficult since new research questions
require some modifications in the coding scheme. Likewise,
some adjustments need to be made to the coding scheme when
dealing with different age groups. In many cases introducing
changes into a coding scheme requires re-analyzing the same
videos all over again. For these reasons applying various methods
of automatic movement extraction and classification in already
recorded videos might help extract additional information and
to pick up the most important aspects of behavior for each study
saving considerable amounts of time.

Quantification of movement in infancy research has been
carried out by placing various invasive instruments, such as
sensors or head cameras, on both the parent and the infant, often
in combination with complex and expensive camera settings (e.g.,
Pereira et al., 2009; Karch et al., 2010). Compared to that effort,
there were relatively few attempts to quantify infant movement in
pre-recorded videos (Rahmati et al., 2014; Mirsharif et al., 2016).
This kind of approach increases the ecological validity of research
in human interactions and considerably reduces the costs and

burden of having to rely on sophisticated movement-tracking
technology. For instance, Rahmati et al. (2014) successfully
applied motion segmentation techniques to obtain movement
data from video recordings in infants at risk of developing
cerebral palsy. However, these motion segmentation techniques
do not perform as well in the case of complex images, where there
is no prior knowledge of the expected movement of each object
due to reduced quality of flow fields (i.e., apparent motion of
brightness patterns in a visual scene caused by the relative motion
between an observer and a scene, Rahmati et al., 2015) and they
would likely cause tracking errors in PCI.

More generally, automatic quantification of movement in
dyadic human interactions has been applied to study e.g.,
nonverbal courtship communication (Grammer et al., 1999) or
interactional synchrony during conversations (e.g., Ramseyer
and Tschacher, 2011; Paxton and Dale, 2013). But the automatic
techniques employed in these studies (e.g., Motion Energy
Analysis, Ramseyer and Tschacher, 2011) are sensitive to
luminance changes. In general, they require stable camera
conditions and people in the image should not occlude each
other. The aforementioned studies showed that such problems
could be minimized in adult studies, where instructions can
be provided to and followed by the participants. However,
infant studies are more challenging since infants do not follow
instructions, the parents often occlude the infant in the field of
view of the camera or the researchers need to manipulate the
position of a remote-controlled camera in order to improve the
view.

Recent approaches have sought to overcome these problems
and employ automatic extraction of coordinated interaction from
facial expressions during PCI (Messinger et al., 2009, 2010).
Messinger et al. (2009, 2010) modeled infant and mother facial
movements using Automated Facial Image Analysis. They used
active appearance models (AAMs) which are algorithms for
matching a statistical model of object shape and appearance
to a new image. Subsequently they applied windowed cross-
correlation analysis and showed that ongoing smiling activity of
one partner predicted subsequent smiling activity of the other
partner. However, AAMs need to be trained using a set of
images, together with coordinates of landmarks that appears
in those images. Moreover, AAMs are typically developed to
solve a specific problem (e.g., to track face features) and the
ability of the model to solve a new problem (e.g., to track
hand movements) depends on the versatility of the model itself.
Therefore, in the current study, we outline a different approach
in which we automatize the coding process using a state-of-
the-art tracking algorithm called Tracking-Learning-Detection
(TLD, Kalal et al., 2010) to obtain fine grained and reliable
movement quantification from videos of interactions of parents
and 5.5-month-old infants. In contrast to AAMs, TLD does not
need initial training and the algorithm is capable of tracking
an object, by learning its shape despite changes in luminosity
and other visual parameters and detecting it frame-by-frame
both in real-time and in pre-recorded videos. Initially, we
studied the applicability of TLD to extract movement from pre-
recorded PCI in different situations. Our analysis is focused on
PCI episodes, where the parent and the infant spontaneously

Frontiers in Psychology | www.frontiersin.org 2 December 2017 | Volume 8 | Article 2228

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


López Pérez et al. RQA and Automatic Movement Extraction

oriented face to face while the parent was animating an
object.

Moreover, we applied TLD for the first time in PCI videos
in combination with Cross-Recurrence Quantification Analysis
(CRQA, Coco and Dale, 2014) in order to investigate the
coupling between movement of the parent and the infant in
parent-child interactions. CRQA is emerging as one of the most
useful methods when exploring the coupling of two behavioral
signals from different actors engaged in a social interaction
(e.g., Shockley et al., 2003; Richardson and Dale, 2005; Shockley
and Turvey, 2005; Stephen et al., 2009). CRQA in comparison
to linear methods such as cross-correlation, provides a more
effective tool to determine whether, and to what extent, two
systems produce common dynamics (Shockley et al., 2003). Thus,
we conducted this nonlinear dynamical analysis on time series
extracted with TLD to test whether individual movements of
each partner are coupled in time. This approach additionally
allows to test whether leader-follower relationships are in place,
i.e., to test which one of the partners is the one mostly driving
such coordinative pattern. Finally, we applied anisotropic Cross-
Recurrence Quantification Analysis (aCRQA, Cox et al., 2016) to
assess the quality of this coupling between both partners in the
interaction. To illustrate this approach, we provide a step by step
example of our methodology (see Supplementary Tutorial).

MATERIALS AND METHODS

Participants
Data presented in this paper were collected as part of a larger
longitudinal study from July 2013 through August 2016. The
mean infant age in the sample was 156.57 days (SD = 14.20,
range 134–179 days) with 8 boys and 13 girls. All infants
were healthy and born full-term. Participants were Caucasian,
predominantly middle-class families living in a city with >1.5
million inhabitants. The mother was indicated as the primary
caregiver for all infants and none of the infants attended a
nursery. Additionally, a 9-month-old girl took part in a separate
study to demonstrate the suitability of the method to extract and
analyse movement in various situations (see section Procedure
on p. 7–8).

Participants were recruited through flyers and posters in local
healthcare facilities, nurseries and throughmedia ads. All parents
gave written informed consent prior to the testing. The study
was approved by the local institution’s ethics committee and
conformed to the Declaration of Helsinki.

EQUIPMENT

All interactions were recorded in a laboratory room, on a
carpeted play area, with a uniform set of age-appropriate toys
using 3 remote-controlled CCTV IP color cameras in SD quality
(752 × 582 pixels). The first camera was placed low on the wall
to capture the infant’s’ visual behavior, the second camera was
placed higher relative to the first camera, in the opposite corner of
the play area. The third camera was placed near the ceiling, in the
third corner of the play area and captured the whole room. The

image from cameras was recorded via an Ethernet connection
with a sampling frequency of 25 frames per second.

The additional interaction (see page 7–8) was recorded with a
remote-controlled CCTV color camera in SD quality (752× 582
pixels) and a Sony cameraModel PJ650VE Full HD (1,080p). The
latter camera was located perpendicular to the interaction.

PROCEDURE

In this study, we selected videos of 21 infant-parent dyads from a
free-play task collected as part of a larger research project (from a
total of 119 available recordings; see Niedzwiecka et al., 2017 for
the description of the project protocol). During the interactions
parents were instructed to play with their infants in the same
way they did at home. We selected predefined episodes, each
coming from a different participant and lasting at least 15 s.
For each episode we chose the recording from the camera that
provided the best field of view of the entire interaction. In these
episodes, the parent and the infant were oriented face to face
while the parent was animating an object in front of the infant
during the whole duration of the episode. The average length
of these episodes was 23.51 s (SD = 8.36 s, range 15–41.08 s).
The remaining 98 recordings were excluded from the analysis
because an episode of face-to-face interaction was not observed
or because such episodes lasted <15 s.

In addition, we separately recorded structured episodes
of infant-parent interactions of another dyad in order to
demonstrate that movement dynamics can be extracted from
different tasks. Two independent scenarios were examined. The
first one involved playing with a spinning toy for 3min while
the second one consisted of a spoon-feeding task of the same
duration. In both tasks the mother and the infant were facing
each other, with the infant sitting in a baby seat and the mother
sitting on the floor opposite the infant.

Data Analysis
Tracking-Learning-Detection

TLD is a recently developed framework that allows tracking
objects in real-time or pre-recorded video streams (Kalal et al.,
2010). The objects do not need to be unequivocally defined in
all their features in advance, but rather simply selected at the
beginning of the video in a rectangular bounding box defining
the object of interest. The algorithm learns the pattern enclosed
in the selected area and tracks this object by estimating its motion
across frames under the assumption that the movement is limited
and the object is visible. Additionally, it detects the object within
the image and makes use of different appearances observed and
learned in the course of the video. Finally, a learning process
continuously checks the performance of both the tracker and
the detector in order to correct errors (i.e., missed and false
detections). This learning process helps the detector to generalize
to more object appearances and to discriminate the object from
the background (Kalal et al., 2010).

In this study, TLD was used to track, on one side, the infants’
focus of attention by following the movement of his/her face
and, on the other, the object which the mother holds in front of
the infant during the interaction (see Figure 1). TLD returned a

Frontiers in Psychology | www.frontiersin.org 3 December 2017 | Volume 8 | Article 2228

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


López Pérez et al. RQA and Automatic Movement Extraction

FIGURE 1 | Example of how TLD was used to track the infant’s focus of attention and the object that the mother held in front of the infant. The red bounding boxes

represent these tracked features. Parents gave written consent to use the images in the publication.

set of coordinates for each tracked feature. In order to analyse
this data in CRQA each set of coordinates was subsequently
translated into a categorical time series indicating the direction
of movement (e.g., left, up-left, down-left). Figure 2 illustrates
this process. First, in every frame, each set of coordinates was
translated into the central coordinates of the tracked feature
(Figure 2A). Then, these coordinates were compared with the
central coordinates of the next frame to determine the direction
of movement (Figure 2B). Finally, this movement was classified
following two tentative systems of coordinates (Figure 2C). The
first one contained 3 categories (simple coordinate system): 0 for
no movement in right or left direction, 1 for right and 2 for left.
The second one had nine different categories (detailed coordinate
system): 0 for no movement, 1 for left direction, 2 for up-left, 3
for up, 4 for up-right, 5 for right, 6 for down-right, 7 for down,
and 8 for down-left.

The performance of the tracker was visually inspected to avoid
false positives. However, in some cases, the tracker was unable to
follow for some frames the specific object or the position of the
infant’s focus of attention. Due to the specificity of the analyzed
episodes, where the parent normally animated the object from left
to right and vice versa, a linear movement was assumed in those
missing frames. Therefore, a linear interpolation was calculated
between the last known point and the first one available (see
section Results on p. 15). The accuracy of the tracker was
computed calculating the percentage of successfully tracked data
points from the total number of frames in the video (e.g., prior to
the linear interpolation process).

Cross Recurrence Quantification Analysis
We used CRQA to quantify the coordination of movements
between infants’ head movements and objects animated by
parents. CRQA is an extension of Recurrence Quantification
Analysis that compares two different time series and extracts
the pattern of matching states at all lags (Zbilut et al., 1998).
We aligned the two categorical movement direction time series
extracted from TLD and applied diagonal-wise CRQA (see e.g.,

FIGURE 2 | Categorization of movement. The central coordinates of the TLD

window are extracted (A) and compared to the next window central

coordinates (B). The movement was classified following two systems of

coordinates containing 9 and 3 categories of movement directions,

respectively (C).

Dale et al., 2011b) to measure their temporal coupling. Positive
matches between time series are represented with a point in
the recurrence plot, which represents the global structure of
recurrence (Dale et al., 2011a). The analysis of recurrence rate
near the main diagonal line of the recurrence plot allows to
reconstruct a lag profile, which contains information about the
coordination of those time series (Richardson and Dale, 2005;
Leonardi et al., 2016). Each diagonal on the recurrence plot
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corresponds to a particular delay or lag in the alignment between
the parent’s and the infant’s movements. For each episode,
a lag profile between −4 and +4 s was calculated in Matlab
(MATLAB 2016a, The MathWorks, Inc., Natick, Massachusetts,
United States) using a translated version of the drpdfromts
function present in the CRQA R-package (Coco and Dale, 2014).
The lag profile does also provide additional information about the
leading actor during the interaction (e.g., Shockley et al., 2003;
Dale et al., 2011a; Leonardi et al., 2016). In our case, negative
values of the profile indicate a parent-leading role while positive
values an infant-leading one.

The distribution profiles were compared to two different
baseline conditions (Richardson and Dale, 2005). This step
is necessary to validate that the patterns within the diagonal
profiles obtained from the recurrence plots are real and do
not arise by chance or due to situational factors. The first
baseline was calculated using the real data from parentmovement
and a shuffled version of the infant movement. In this case,
the temporal order of the infant time series was shuffled and
its recurrence computed with the original parent time series.
By shuffling the infant time series, the individual recurrences
are distributed evenly over the time series and this baseline
represents the likelihood that the profile is generated accidentally
or by one movement randomly following the other (Richardson
and Dale, 2005; Dale et al., 2011a). The second baseline was
obtained by random-pairing. Here, the recurrence was averaged
between the parent and five other randomly selected infants. This
baseline controls that the profile is not task-specific. Task-specific
recurrence refers to the baseline of recurrence between infants
who share the same free-play task but show different behavior
(Richardson and Dale, 2005). During random-pairing the time
series may possess different length. In this case, the last part of
the longest time series was trimmed to match the length of the
shortest one.

Statistical Analysis
To assess any statistical difference among the recurrence profiles
obtained and the baseline profiles taken as control conditions
in this comparison, we used linear mixed effects modeling.
The chosen model was similar both in the case of the detailed
coordinate system and in the case of simple coordinate system. In
the statistical model fitted we used two variables as fixed effects
(Condition and Lag) and one (Dyad) as the random effect. The
dependent variable modeled was the level of Recurrence Rate in
the profile. Both in the case of shuffled baseline condition and
in the case of false pair baseline condition we used the fixed
effect Condition and compared its two levels, i.e., baseline vs.
experimental, on the outcome variable Recurrence Rate at the
intercept. In the case of the second fixed effect (Lag), we used
a subset of the lags in the original profiles (corresponding to
a coarser grained time sampling at 6.25Hz from −4 to +4 s)
reducing hence the number of lags (i.e., the levels of this variable)
entered into the analysis from 201 to 51. This considerably
reduced the number of coefficients to be estimated in the analysis
(from 404 to 104). The second fixed effect (Lag) compared
the value of Recurrence Rate at each of the 51 lags with the
reference level taken at lag −4 s. The full model fitted the fixed

effects singularly and in interaction between them, in which
case the value of Recurrence Rate for the level of experimental
Condition at each Lag was contrasted with the reference value
(i.e., baseline Condition at Lag −4 s). We also built and fitted
two additional and more general models in order to proceed with
model comparison through likelihood-ratio tests. One of these
models did not take into account the interaction of Condition
and Lag, while the second was the minimal “null” model, with no
fixed effects and only the random effect. The analyses were run in
R (R Core Team, 2016) using packages lme4 (Bates et al., 2015)
and lmerTest (Kuznetsova et al., 2016), which allow to check the
statistical significance for the estimated coefficients of the model
using t-tests and the Satterthwaite approximations for the degrees
of freedom.

Bonferroni-corrected t-tests were applied to compare the
individual profiles during the spinning and the feeding tasks.
Thus, each profile was divided into four windows of equal size
and individual t-tests were performed for each one. Post-hoc
Bonferroni correction was applied by dividing the significant test
alpha (0.05) by the number of windows. Only those t-tests whose
p-values were lower than the adjusted alpha level were considered
significant.

Anisotropic CRQA
In CRQA, the nature of categorical time series impacts the
recurrence plots in such way that most of the recurrences
are arranged to form rectangular or vertical line structures.
However, most of the traditional RQA measures focused on
quantifying diagonal structures (Webber and Zbilut, 1994). Thus,
recently, a new technique, called Anisotropic CRQA (aCRQA),
has been proposed to overcome this problem (Cox et al., 2016).
Instead of analyzing the diagonal structures, aCRQA can provide
information about the coupling between two time series by
quantifying the vertical and horizontal structures in the plot.
Three measures are considered in this case (Cox et al., 2016):

- Laminarity (Lam): is the proportion of recurrences that are part
of the vertical or horizontal lines, and indexes the general level
of persistence in some particular state of one of the time series.

- Trapping Time (TT): is the average length of either the vertical
or horizontal lines. In the recurrence plot, it indexes the
average time spent by the participants in the various movement
categories mapped in the time series. It was calculated here
using the tt function from the CRP Toolbox for Matlab
(Marwan et al., 2002).

- Maximum Line (MaxL): represents the length of the longest
vertical or horizontal line and hence gives the longest time
spent in a single state by interaction partners.

It has been recently proposed that the directionality of the
asymmetry between vertical and horizontal lines in a recurrence
plot can provide complementary information about the coupling
of two subsystems (Cox et al., 2016). De Jonge-Hoekstra et al.
(2016) applied cross-recurrence to analyse gestures and speech
data streams recorded in children during a hands-on science task
and found that in 5-year-old children such asymmetry in the
resulting recurrence plots suggests that speech categories attract
gesture categories at the same level of abstraction in a more
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dynamically stable fashion than vice versa. They also showed
that gestures and speech are more synchronized when children
grow older. In our case, any asymmetry found between vertical
and horizontal lines would reveal an asymmetric dynamic
attunement between the movement of the parent and the infant.
For example, if the movements of the mother and infant recur
and have the same duration in time a perfect symmetry would
be found. However, such coordination during interactions is
difficult to achieve and the asymmetry between movements starts
to arise. Here, we expect an asymmetric dynamic attunement
between the movement of the parent and the infant since the
movement of the parent is likely more continuous and lasts
longer in comparison with the movement of the infant.

RESULTS

Moving Toy
TLD was able to track the object and the infant’s direction of
looking with an overall average accuracy of 94.65% (SD= 10.11),
leaving only a small portion of missing values. Separately, the
infant’s direction of looking was tracked more efficiently with an
average accuracy of 98.48% (SD = 5.15) in comparison to the
object 90.81% (SD = 12.34). Particularly, the tracker was able to
follow the infant’s direction of looking with an accuracy of 100%
in 18 out 21 cases. Likewise, the tracker kept up with the object
with accuracy >90% in 15 out of 21 cases, with only one case
below 75% accuracy because the object wasmoved too fast during
the interaction. All missing values were linearly interpolated
between the last known point and the first one available. The
number of interpolated points varied from 0 to 304 for the object
and from 0 to 86 for the infant’s direction of looking (total points
ranged from 375 to 1,027). The average number of interpolated
points was 6.62 (SD = 20.03) for the infant’s direction of looking
and 47.81 (SD= 71.92) for the object.

Lag profiles of recurrence were computed using diagonal-
wise CRQA for both types of movement categorization
(Figures 3A,B). The maximum recurrence of the average profile
between the infant and parent movements was observed in both
cases at a lag of −240ms. In other words, the parent moved the
object in front of the baby and after 240ms the infant followed
it with head movement. The statistical comparison of CRQA lag
profiles with randomized baseline profiles of the same time series
showed that this coupling was not produced accidentally or by
random head movement. A likelihood ratio test compared the
full linear mixed model (both additive and interaction effects)
against more general null-models (additive only or no effects).
The test showed that the full model is highly significant for
both analyses compared to the additive only model [detailed
coordinate system: χ2

(50) = 234.54, p < 0.001, V = 0.52; simple

coordinate system: χ2
(50) = 287.39; p < 0.001, V = 0.47], which

in turn is also highly significant compared to the null model
[detailed coordinate system: χ2

(51) = 220.14, p < 0.001, V = 0.45;

simple coordinate system: χ2
(51) = 6832.17, p < 0.001, V = 2.55].

When looking at the significance of the modeled coefficients
of the full model, in the analysis with the simple coordinate
system significant coefficients of the interaction between Lag and
Condition were found at lags between −1.28 and 0.48 s (ts >

2.074, ps < 0.05, ds > 0.046), while in the detailed coordinate
system they ranged between lag −1.44 and lag 0.8 s (ts > 1.991,
ps < 0.05, ds > 0.046). This confirms that the recurrence at these
lags arises from a real process of coordination of the movements
of mothers and infants, and is significantly different from the
shuffled baseline level.

Next, we tested whether the coupling was due to infants
sharing the same free-play task by randomly pairing each mother
with 5 different infants (Figure 4). No coupling was found
between the mother’s movements and the movements of any
of the randomly-paired infants. A likelihood ratio test showed
again that the full linear mixed model was highly significant
in comparison with the additive model for both the analyses
[detailed coordinate system: χ

2
(50) = 288.49, p < 0.001, V =

0.52; simple coordinate system: χ
2
(50) = 287.89; p < 0.001,

V = 0.52], and the additive model was significantly different
from the base (null) model [detailed coordinate system: χ

2
(51)

= 6872.94, p < 0.001, V = 2.55; simple coordinate system:
χ
2
(51) =6827.09, p < 0.001, V = 2.55]. Even in this case

the significant coefficients of the interaction between Lag and
Condition were located in a very specific range around lag
0, comparable to the one already registered in the previous
analyses. In both cases (for the simple and the detailed coordinate
systems) this interval ranged from Lag −1.28 and 0.48 s (ts
> 2.07, ps < 0.05, ds > 0.046). This shows that the effect of
movement coupling in mother-infant dyads as captured by cross-
recurrence profiles is significantly different than the random-
paired baseline level and it cannot be attributed to the task
itself. Some task-related recurrence is, however, present since
the random-paired baseline has higher overall recurrence in
comparison to the shuffling baseline. This is more visible in
the simple coordinate system where the mean recurrence rate
(RR) shuffled and RR random-paired were respectively equal to
43.99 (SD = 2.05) and 47.52 (SD = 0.61) in comparison with
the detailed coordinate system where the mean RR shuffled and
the mean RR random-paired were 22.89 (SD = 0.51) and 23.41
(SD= 0.59).

To investigate the asymmetry in the coupling of the
two subsystems, or in other words, the directionality of
the asymmetry between vertical and horizontal lines in the
recurrence plot, we applied aCRQA.We looked at the proportion
of recurrences that are part of the vertical or horizontal lines
(i.e., laminarity, Lam), the average length of these vertical or
horizontal lines (i.e., trapping time, TT) and the longest vertical
or horizontal line (i.e., maximum line, MaxL). Results from the
aCRQA analysis on the vertical (i.e., subscript v) and horizontal
(i.e., subscript h) lines are presented in Figure 5. LamV ranged
from 0.78 to 0.97, meaning that 78.37–97.27% of the recurrent
points form vertical lines. TTV varied from 2.98 to 8.26 average
recurrence points, or in other words, the infant movement
follows the mother movement with an average duration from
74.50 to 206.5ms. MaxLV ranged from 7 to 52 recurrence points,
showing that the maximum time the infant is trapped within
the mother movements lasted from 175 to 1300ms. Horizontal
values were higher in comparison to the vertical ones with LamH

fluctuating from 0.83 to 0.99, TTH from 2.44 to 18.59 andMaxLH
from 4 to 134.
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FIGURE 3 | Average object-infant’s focus of attention (blue) and object-shuffled infant (red) lag profiles computed using diagonal-wise CRQA for the detailed (A) and

the simple (B) coordinate systems. The light red and light blue lines represent the standard deviation of mean normal and shuffled profiles, respectively. The red

shaded area represents the time window where significant differences were found between the original (blue) and control shuffled profiles (red).

FIGURE 4 | Average object-infant’s focus of attention (blue) and object-randomized infant’s focus of attention (red) lag profiles computed using diagonal-wise CRQA

for the detailed (A) and the simple (B) coordinate systems. The light red and light blue lines represent the standard deviation of mean normal and random-paired

profiles respectively. The red shaded area represents those times where significant differences were found between both profiles.

Paired-samples t-tests showed that at a group level for all three
measures the averages for the horizontal lines were significantly
higher than for the vertical lines [LAM, t(20) = −5.59, p < 0.01,
d=−1.77; TT, t(20) =−3.30, p< 0.01, d= 1.008 andMaxL, t(20)
=−5.31, p < 0.01, d =−1.50]. This reveals an asymmetry in the
dynamics between the parent and infant movements. It suggests
that the infants’ movement in one direction is more irregular
compared to the parents’ movement in one direction, which was
more continuous and regular.

Feeding Task
TLD was able to track whole-body movements of the infant
and the mother with an overall accuracy of 100% in both cases
since the tracker did not report missing values. Example frames
from the recordings of the interaction can be seen in Figure 6.
During the interaction, the mother repeatedly moves back and
forth feeding the infant, who also moves accordingly. Given that

we tracked whole body movements and that in the previous
task (moving toy) the simple coordinate system captured the
movement adequately, we decided that a more fine-grained
categorization was not necessary since the baby seat restricts the
infant movement (see SupplementaryMaterials for the results for
the detailed coordinate system).

Following the same procedure as previously, we carried out
a CRQA analysis to calculate the lag profiles of recurrence.
Figure 7 represents the lag profiles computed for the simple
coordinate system. The maximum recurrence between
movements of the infant and the mother was observed at a
lag of −200ms. This means that the mother initiated an action
that was followed by the infant after approximately 200ms.
Bonferroni-corrected t-tests showed significant differences
between the original recurrence profile with the shuffled one in
the four windows [Time Window 1: t(49) = −13.89, p < 0.001,
d = −2.75; Time Window 2: t(49) = 5.23, p < 0.001, d = 2.01;
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FIGURE 5 | Means and standard deviations of the laminarity, trapping time and maximum line from the aCRQA analysis (blue represents vertical lines and red

horizontal ones). Laminarity is measured in percentage (%) while trapping time and maximum line are measured in recurrence points. The mother’s movement was

represented along the horizontal axis, while the infant‘s movement along the vertical axis of the recurrence plot.

TimeWindow 3: t(49) = 9.16, p < 0.001, d = 1.17; TimeWindow
4: t(49) = 6.54, p < 0.001, d = 1.33]. This suggests that the
movements of mother and infant are coupled also in this task
and are not produced by chance.

Finally, aCRQA was applied to study the asymmetry between
vertical and horizontal lines in the recurrence plots. Visual
inspection revealed lower asymmetry in this case (LamV, = 0.91,
TTV = 9.77, MaxLV = 71, LamH, = 0.96, TTH = 9.63, MaxLV =

136) suggesting increased coordination in the movements of the
parent and the infant during this task.

Spinning Toy Task
Once again, TLD was able to track the infant and mother whole
body movements with an overall accuracy of 100% for both
partners. Example frames from the recordings of the interaction
during the spinning toy task can be seen in Figure 8. During the
interaction both the parent and the infant recurrently move back
and forth interacting with the spinning toy. In the same way as
in the feeding task, here we tracked whole body movements and
used a simple coordinate system to capture the movement (see
SupplementaryMaterials for the results of the detailed coordinate
system).

Since the dynamics of movement in the spinning toy task are
more complex, we extracted the profiles from −5 to +5 s in case
later peaks arise (Figure 9). Once more, we carried out a CRQA
analysis to calculate the lag profiles of recurrence. The maximum
coordination between categorized movements when using the
spinning toy was found at−640ms. Interestingly, the plot shows
two minimum values located at+1400 and−3120ms suggesting
low recurrence between movement categories at those times. The
comparison with the randomized baseline profile of the infant
movement visually shows again that this profile was not produced
accidentally or by random playing with the object. Bonferroni-
corrected t-tests showed significant differences between the

original recurrence profile with the shuffled one in the four
windows [Time Window 1: t(61) = −5.96, p < 0.001, d = −0.07;
TimeWindow 2: t(61) = 5.16, p < 0.001, d = 0.85; TimeWindow
3: t(61) = −9.67, p < 0.001, d = −2.43; Time Window 4: t(61) =
3.16, p = 0.002, d = 0.70]. The positive sign of the t-test in the
second window in comparison to the first and the third window
suggests that the coordinative recurrence peak concentrates in
that area while in other windows there is actually less recurrence
than the random level. This shows that the movements of mother
and infant are coupled also in this task and again are not
produced by chance.

Finally, aCRQA was applied and asymmetry was again
observed in this case (LamV, = 0.83, TTV = 5.35, MaxLV = 54,
LamH, = 0.93, TTH = 8.44, MaxLH = 76) where the mother
movement is more regularly displaying the same direction of
movement compared to the infant. Following the results of the
moving toy task this suggest that the infant’s movement in one
direction is more irregular compared to the mother’s movement.

DISCUSSION

Our goal was to test the feasibility of conducting automated
movement analysis in pre-recorded videos of parent-child
interactions (PCI) as a more efficient method than manual
coding. We explored the utility of (TLD, Kalal et al., 2010) to
extract movement features from videos (e.g., gaze dynamics,
whole body, leg or arm movements of both the parent and the
infant). We showed that TLD tracked the selected features from
these videos with high efficiency. Furthermore, we demonstrated
that TLD in combination with CRQA can successfully extract
interactive movement dynamics and enables efficient analysis of
movement in videos. This is, to our knowledge, the first study to
employ TLD in combination with CRQA to analyse PCI data.
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FIGURE 6 | Example frames of the interaction during the feeding task. First, the mother leans forward to feed her baby (A). Then, the baby leans back anticipating the

food while looking at her mother (B). Finally, the mother and the baby move back to the original position (C). This process is repeated throughout the interaction.

Parents gave written consent to use the images in the publication.

FIGURE 7 | Lag profile between mother and infant body movements during

feeding task computed using diagonal-wise CRQA for the simple coordinate

system. The asterisks represent in which windows there were significant

differences between the original recurrence profile with the shuffled one (***p <

0.001).

Application of TLD to Face-to-Face
Interactions
TLD succeeded in tracking the infant direction of looking and
the toy that the parent was manipulating (accuracy > 90%).
TLD tracked the infant direction of looking with higher accuracy
than the object, which can be explained by more restricted
movement of infants in relation to the moving object. Like many
available trackers, the TLD algorithm did not report any value
or produced false ones, when some data was missing. One of
the main reasons for this is due to clutter, i.e., when the object
of interest is difficult to discriminate from other objects in the
scene (Maggio and Cavallaro, 2011). For instance, if the parent
manipulates an object with similar color than his/her clothes or
the background, the tracker can falsely place the object in those
areas even if the object hasmoved away. Therefore, it is important

to visually control the performance of TLD so the tracker does
not produce false positives. Although this imposes a manual
intervention on the side of the experimenter, this is certainly not
as time consuming and does not introduce any observer bias as
it is likely in the case of frame-by-frame manual coding. Other
common problems in trackers are those related to occlusions or
variations in object appearance (Ross et al., 2007). However, TLD
is continuously updating the tracker and training the detection,
learning in each frame new positions of the object, allowing also
for its re-detection, even after a temporary occlusion. Therefore,
we believe that TLD and trackers using similar based theory
(e.g., Nebehay and Pflugfelder, 2013) can considerably facilitate
movement analysis in pre-recorded videos.

To our knowledge, the movement categorization applied
in this paper has not been used in the study of PCI before.
Traditionally, movement coding schemes are more general and
mostly qualitative (Chorney et al., 2014). This is probably due
to the fact that a fine-grained categorization of movements as
the one presented here would probably be time-consuming and
costly. In fact, it would require performing a frame-by-frame
analysis, categorizing the direction of movement of each feature
of interest. Apart from being laborious, it would most likely
be highly erroneous and unreliable between coders, since often
the movement is so small that a human coder would have
difficulties noticing it.We overcame these issues by applying TLD
together with the automatic classification of movement. Such a
computational approach allowed fast frame-by-frame movement
extraction and efficient categorization of every movement, thus
reducing potential errors.

Accurate quantification of movement during human
interactions can also be carried out with instruments such
as sensors and with complex and expensive camera systems.
However, the use of automatic algorithms such as TLD may
enhance the ecological validity of research on interactions.
Apart from TLD there are other algorithms for movement
quantification: Motion Energy Analysis (e.g., Ramseyer and
Tschacher) or the frame-differentiating method (Paxton and
Dale, 2012). However, TLD is a tracker, so its advantage
in comparison with other ecological approaches is that it
determines the direction of movement of a feature instead of
quantifying how much movement there is in a pre-defined area
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FIGURE 8 | Example frames of the interaction during the spinning toy task. First, the mother leans forward and shows the functioning of the spinning toy to the infant

(A). The infant interested leans forward to play with the object (B) while the mother leans back (C). This process is repeated throughout the interaction. Parents gave

written consent to use the images in the publication.

FIGURE 9 | Lag profile between mother and infant body movements during

the spinning toy task computed using diagonal-wise CRQA for the simple

cosordinate system. The asterisks represent in which windows there were

significant differences between the original recurrence profile with the shuffled

one (**p < 0.01, ***p < 0.001).

of a video image. It is particularly useful in combination with
the analysis that quantifies synchronization of partners during
interactions, such as CRQA and it could prove useful in all
analyses of large corpuses of naturalistic video recordings, e.g.,
from clinical assessments, for which there is no coding scheme
available.

Integration of TLD and CRQA
CRQA analysis of the time series extracted using TLD revealed
the dynamics of coupling between the infant head turning and
the toy animated by the parent. The coupling was not related
to the behavioral task itself and it could not be attributed to
random looking by the infant. We confirmed this by computing
the recurrence, first, between the parent and shuffled version
of the infant time series and second, between the parent and

five randomly selected infants (Richardson and Dale, 2005; Dale
et al., 2011a). The effect of movement coupling in mother-infant
dyads as captured by cross recurrence profiles is different from
recurrence due to task setting (as indicated by the random-paired
profiles) as well as different from a random baseline obtained by
shuffling the behavioral time series (see Figures 3, 4). We note
that the overall mean recurrence of the random-paired baseline
differed from the shuffled baseline. Although no coupling was
found, the higher mean recurrence observed in the random-
paired baseline could be attributed to some residual task-specific
recurrence, which is higher when fewer movement categories are
present.

To better quantify movement patterns, it is important to
select an appropriate movement categorization. In this paper,
simple and detailed coordinate systems were applied to the
data. Although the recurrence profiles were similar in the toy
and spinning tasks, they differed slightly in the feeding task
(see Supplementary Materials for the results of the detailed
coordinate system for the spinning toy and feeding tasks). This
arises probably because the simple coordinate system by default
collapses levels of movement detail into fewer bins, which might
lead to information loss. In fact, the central recurrence peak in
the simple coordinate system splits into two peaks when applying
the detailed one. These two peaks probably describe two different
movement patterns, which cannot be depicted with a simpler
coordinate system. Thus, the selection of the coordinate system
is critical for a correct understanding of the recurrent movement
patterns.

Additionally, to interpret the CRQA lag profiles it is important
to consider the position of interaction partners relative to the
camera. For example, in the free play situation the interaction
was happening mainly in the line of sight of the camera so
both movements follow the same category, i.e., if the object
moved to the left, the head of the infant also moved left when
following it (Figure 1). In the spinning toy task, however, the
interaction is happening perpendicular to the line of incidence
of the camera, therefore having a mirrored movement. If both
movements are categorized in the same way, the interpretation
of the coordination will be more complex. The reason for this
complex profile can be seen in Figures 8A–C. First, the mother
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leans forward and shows the functioning of the spinning toy to
the infant (Figure 8A), which then leans forward to play with
the object (Figure 8B) while the mother leans back (Figure 8C).
This sequence is repeated throughout the interaction. Figure 8
illustrates how, for example, the mother and the infant, when
approaching the spinning toy, fall into different movement
categories (i.e., mother moved left and the infant–right).
Therefore, those movements will not recur and a minimum
will be found at the moment of highest coordination, when
they approach the toy. The presence of movements in opposite
directions is not a limitation itself, but it is an essential feature
to consider together with the type of movement categorization
and position of the camera, so that the CRQA lag profile can
be correctly interpreted. Importantly, all these contingencies
in behavior may be captured by integrating TLD and CRQA
together.

Apart from revealing the coupling between behaviors of each
partner, the CRQA may indicate who is leading and who is
following during the interaction (e.g., Shockley et al., 2003; Dale
et al., 2011a; Leonardi et al., 2016). In the moving toy task
the maximum recurrence between the infant and the parent
movements was found at −240ms. Thus, the parent moved
the object and the infant followed after about 240ms. This
coupling is supported by previous research, which showed that
already 2-month-olds visually track objects moving back and
forth (Von Hofsten and Rosander, 1997), while 5-month-olds are
able to follow moving objects using anticipatory head and eye
movements (e.g., Jonsson and Von Hofsten, 2003).

We further explored the quality of the coupling of the
mother and the infant movements using anisotropic Cross-
Recurrence Quantification Analysis (aCRQA, Cox et al., 2016).
We found an asymmetry in the parameters with the horizontal
values significantly higher than the vertical ones. The higher
values obtained in the horizontal axis suggest that the parent’s
movement constitutes larger structures (i.e., high horizontal
laminarity), it is trapped in relatively long periods during the
infant movement (i.e., high horizontal trapping time) and it stays
continuously in a single matching behavior for a long period
(i.e., high maximum horizontal line) (Cox et al., 2016). In other
words, the mother’s hand movement was more stable, showed
less variability and kept the direction of movement for longer
in comparison with the infant’s head movement. There are two
possible explanations of this asymmetry. First, it could be due to
the fact that the arc of movement of the toy is longer compared
to the infant head movement. Second, the contribution of head
movements to visual tracking in infants increases from early age
(Bertenthal and Von Hofsten, 1998). At 5 months, however, head
tracking still does not dominate as it does at a later age (Daniel
and Lee, 1990; VonHofsten and Rosander, 1997). Thus, this jerky
movement increases the asymmetry in the aCRQA parameters
since the infant is still not able to efficiently and smoothly pursue
the moving object. Further studies of this issue are necessary
to confirm whether this asymmetry decreases with age as the
one we observed during the feeding task where the infant was
older and the aCRQA parameters suggested a more synchronized
interaction.

Limitations of the Current Approach
In most of free play locomotor studies, the primary camera
used for behavioral coding might move to obtain a better view
during the interaction (e.g., Adolph, 2008). Although TLD is still
able to track individual features in moving camera conditions
(Kalal et al., 2010), the categorization of movement applied here
would be affected by the camera displacement therefore leading
to wrong categorizations. A possible solution would require a
static reference point always present in the video in order to
estimate the camera displacement to correct the tracked features.
Moreover, during interactions outside constrained lab settings,
the environment is typically more cluttered, occlusions occur
more often and variations of the tracked features arise more
frequently, which could affect the efficiency of the tracker.

The approach presented here offers a tool to analyse a range
of fine-grained individual movements of parts of the body (e.g.,
head or limb movements). However, the age of the infants tested
simplified the analysis since movement at 5.5 months of age
is limited and as infants grow older, their movement patterns
become more complex (Adolph and Franchak, 2017). However,
limited locomotion is not a prerequisite for using TLD and
large-scale movements of the head and the body can still be
tracked at a later age; for instance, when mothers try to engage
infants in mutual collaboration tasks. But as movements become
more complex, TLD may become less efficient in tracking some
specific, fine movements. For instance, TLD efficiently tracks
hand movements but it would be more difficult to classify more
specific hand movements such as grasping or finger movements
using the present categorization. Likewise, as in Messinger et al.
(2009), TLD would be able to track face movements or even
particular face features (e.g., mouth, eyes) but it would fail
to quantify a higher level of detail such as a smiling activity.
Therefore, in some cases manual codingmay still prove necessary
to capture selected aspects of PCI. However, recent approaches
are aiming at applying machine and deep learning techniques to
quantify hand movements (Liu et al., 2014) or to detect facial
expressions (Messinger et al., 2009). Combining these machine
learning techniques with the approach presented here could
prove fruitful.

In the case of infants moving in the camera’s view, TLD
allows to center the camera position in relation to the tracked
feature. In this way, the feature of interest will be always centered
in the video image, which may facilitate the application of
machine learning algorithms to measure some movements. As
a result, TLD can be used to quantify a movement (e.g., head
movement) and center the camera position relative to it, and
machine learning approaches can be used to extract more specific
movements (e.g., smiling).

Data interpolation in TLD requires further consideration. In
our case, in those episodes where missing values were reported
by the tracker, a linear interpolation was assumed between the
last known point and the first available. Although this proved
sufficient here, where most of the movement mainly follows a
linear path from left to right, a more complex categorization
of the movement might need different assumptions in order to
improve the recurrence between the movement of the parent
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and the infant during CRQA. For instance, infants lying on
the floor have a restricted head movement from left to right
with <180◦ rotation in comparison with the manipulated object,
which moves more freely. When using a more fine-grained
categorization, if an object moves in an up-right direction, the
head movement of the infant due to the rotation of the head
will most certainly fall into a down-left category, therefore not
producing any recurrence in the analysis. In this case, a linear
interpolation of the data will probably categorize the movement
incorrectly. Thus, future studies need to further investigate
the interpolation of missing data to the selected categorization
of movement in order to correctly estimate the number of
recurrences between movements.

Finally, our analysis was constrained to a restrictive
interaction context in which parents animated an object and
the infants followed them with their head and gaze. Thus, our
approach may have a limited set of applications, given that
face-to-face interactions are relatively infrequent in naturalistic
studies (e.g., Deák et al., 2014). However, despite being rare,
we believe that the study of face-to-face interactions is still
important since the duration of face-to-face episodes during early
interactionsmay have long-term effects on cognitive skills such as
attention control (Niedzwiecka et al., 2017).

Future Directions
The approach to movement extraction and dynamical analysis
outlined in this paper can be applied in multiple areas
of developmental research. One possible application of this
approach would be the analysis of parent-child locomotor
behaviors, i.e., the approach and avoidance behaviors or changes
in parent-child proximity distance (e.g., Peery and Crane,
1980). These variables are crucial in studies stemming from
the attachment-related behaviors (Ainsworth, 1979). Under
stable camera conditions this method could be used to track
and categorize whole-body movements. Consequently, distances
between the partners might be computed using the tracked
features or even synchronization between the categorized
movements could be computed using CRQA (e.g., Shockley et al.,
2003).

A second potential line of work concerns the analysis of
general movements of infants with developmental disabilities,
such as cerebral palsy (e.g., Dimitrijević et al., 2016). Cerebral
palsy in young infants is investigated by looking at their
general movements and it is normally characterized by abnormal
movements of reduced complexity, variability and fluency (e.g.,
Ferrari et al., 1990). Another potential application would be the
study of infants at risk of autism. Several studies have reported

that motor atypicalities are associated with later ASD and are
a common comorbidity in people with autism (e.g., Teitelbaum
et al., 1998; Zwaigenbaum et al., 2005). This approach might be a
useful tool to quantify and analyse movement in these studies in
search for intraindividual and interpersonal motor coordination
disabilities.

CONCLUSION

Our study sought to investigate the use of TLD to extract
movement of each partner from video recordings of interactions
during free-play of 5.5 months-old infants and their mothers. We
demonstrated that automatic movement extraction from video
recordings may considerably improve the efficiency of movement
analysis in dyadic interactions. CRQA of extracted movement
time series was proven to be a useful tool to examine the dyadic
behavior as a system, allowing us to characterize the coordination
between the movement of each interaction partner at different
points in time and to determine leading patterns of behavior.
Moreover, anisotropic CRQA showed that the differences in the
symmetry of the parameters of recurrence plots may shed light
on the quality of the movement that likely reflects individual
differences in motor development.
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