Do we need expensive equipment to quantify infants’
movement? A cross-validation study between
computer vision methods and sensor data
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Abstract—Recent progress in the study of infant motor
development has been achieved by ground-breaking paradigm
shifts combined with clever and innovative tasks that place the
infant center stage as the acting subject. One of the challenges that
developmental scientists are facing today is understanding the
complexity of infants’ spontaneous movements. Novel methods
such as wearables and computer vision methods have the potential
to revolutionize the measurement of infants’ motor behavior in
various situational and social contexts. However, a comparison
between any computer method and wearables data has not been
carried out so far in this age group for spontaneous behavior
during social interactions with a caregiver. In this paper, we
compare the results of Deeplabcut, an algorithm for tracking user-
defined body parts, with simultaneously acquired wearable data
and show that computer vision can be a good alternative to
advanced wearable systems.

Keywords—Computer Vision, IMUs, wearables, DeepLabcut,
infant movement

I. INTRODUCTION

The development of human motor behavior involves
learning through practice as infants improve their skills over
time. Changes in behavior take place across long periods of time
(days, weeks, or months). Being able to capture constituent
movements in detail across longer timeframes in multiple
situations may help us discover developmental trajectories of
emerging motor skills [1]. Standardized assessments of motor
milestones, which assume a specific order or progression and
age of acquisition, cannot reliably capture the complexity of
infant development. To achieve this goal, a large variety of
sophisticated, lab-based methods and experimental designs have
been used for many decades (e.g., instrumented floors,
treadmills, force plates, video), but thanks to recent advances in
technology, we are now able to characterize infants’ spontaneous

Zuzanna Laudanska
Institute of Psychology
Polish Academy of Sciences
Warsaw, Poland
0000-0001-6790-9559

Agata Koziot
Faculty of Psychology
University of Warsaw

Warsaw, Poland
0000-0002-6469-4107

Alicja Radkowska
Institute of Psychology
Polish Academy of Sciences
Warsaw, Poland
0000-0002-0909-3368

Przemystaw Tomalski
Institute of Psychology
Polish Academy of Sciences
Warsaw, Poland
0000-0002-0390-5759

movements with much higher accuracy and less manual labor.
New technologies, like small wearable sensors and computer
vision for analyzing movement in video recordings may greatly
facilitate the measurement of infants' natural activity.

Wearable motion trackers are now available in a wide
variety of choices ranging from basic accelerometers to the
more advanced Inertial Motion Units (IMUs), and they can be
even found in the forms of miniature sensors embedded in baby
suits (e.g., [2]). Simple accelerometers measure the 3-
dimensional (3D) acceleration (the rate of change in velocity of
an object) of a body part, so they can be used, for example, to
explore infants’ physical activity and sedentary behaviors
across daytime hours (see review by [3]). More advanced IMUs
typically combine accelerometers and gyroscopes with
magnetometers that measure the strength and direction of the
Earth-magnetic field. By using a biomechanical model of the
human body (see more details in [4]) or additional information
from magnetometers (e.g., [5]), we can even track the dynamic
motion and estimate the orientation and position changes of
body segments in 3D.

Wearable motion trackers can precisely detect subtle
changes in infants’ postures and body movements that are not
easy to perceive with the naked age, but they do not yet offer a
complete or easily deployable solutions for developmental
research. They are expensive, the weight and size of the
currently available ones may not be suitable for the youngest
infants and newborns, they may be difficult to use with some
clinical populations (e.g., infants with sensory difficulties who
may be irritated by additional weight on limbs), and the
majority of promising results come mostly from proof-of-
concept studies (e.g., [6-7]). Thus, video-based measurement is
still considered the gold standard in infant studies because it is
the only tool able to capture the richness and complexity of



behaviors as well as the details of the surrounding context (e.g.,
[1]). Available for almost a century (e.g., [8]), it can be used to
study infant behavior across long periods of time (days, weeks,
or months), and it is increasingly available through multiple
devices (e.g., smartphones, cameras). Video recordings reveal
the physical and social context in which a behavior occurs; they
are inexpensive, readily accessible and provide a potentially
unobtrusive way of recording infants' behavior in their natural
environment (e.g., [9]), and may even serve as a representation
of an infant’s field of view when head-mounted cameras are
used (e.g., [10]). However, as technology improves, the amount
of data also increases. The analysis of longer and more complex
recordings of infants’ natural activity requires laborious and
costly manual coding. Unsurprisingly, this has recently led to
the development of many new tools for automatic tracking of
human posture (e.g., Deep Pose [11]; OpenPose [12]). One
major advantage is that they enable the use of videos recorded
for other purposes or available in open repositories to conduct
large-scale analyses ([1]). Additionally, these tools are
predominantly open-source and freely available, which makes
them the most affordable of the methods for tracking infant
movement. However, studies carried out so far used 2D
previously recorded videos (e.g., [13-15]), where the infant was
in a clear view, which leaves open (1) the accuracy of
estimation in complex environments and (2) the utility of these
methods in multi-person settings such as parent-infant
interactions.

Developmental scientists are in need of cheap, reliable and
unobtrusive methods for measuring the dynamics of body
movement of young infants in naturalistic social interactions.
Current wearable methods have limitations on their use across
contexts and age groups. We aimed to test the reliability of
computer vision methods as an alternative for studying
spontaneous motor behavior of young infants. To this end, we
compared the reliability of movement estimation between
Deeplabcut (DLC) [16], a pose-estimation computer vision
algorithm that predicts and tracks the location of a person,
animal or object and allows the tracking of user-defined body
parts, and IMU wearable data. The amount of computer vision
methods to quantify movements has increased over the last
decade [17,18], but we chose DLC due to its flexibility which
allows the user to define what should be tracked and does not
rely on a predefined skeleton. We show that video-based
analyses can provide a good movement estimate of individual
limbs of young infants in different interactive tasks, when
compared against data collected with advanced IMUs.

II. MATERIALS AND METHODS
A. Participants

A total of 12 healthy, full-term (36 gestational weeks or
more) infants at the age of 4 to 5 months (M =4.49, SD = 0.22)
contributed data for the analysis. Participants came from
predominantly middle-class families living in the city with >1.5
million inhabitants. The study was approved by the local ethics
committee and conformed to the standards of the Declaration of
Helsinki. Prior to the testing, all parents gave written informed

consent. For their participation, the families received a diploma
and a small gift (a baby book).

B. Procedure

During lab visit, dyads of parents and infants participated in
several semi-structured interactions with age-appropriate toys.
Interactions were recorded in a laboratory room, in a carpeted
play area, using three remote-controlled CCTV color cameras in
HD quality with a 1920x1080 resolution at 25 Hz. During the
interaction, one experimenter operated the cameras (this
included zooming in and out as well as moving cameras
vertically and horizontally) to ensure that at least one camera
captured the infant’s behavior and one camera captured the
parent’s behavior. In this paper, we compare data from two tasks
varying in demands: play with rattles (Task 1) and free play
(Task 2). Task 1 was a semi-structured play: the infant was
placed in a baby bouncer (N = 9) or, in case of refusal, on the
floor (N = 3). The dyad was provided with 4 rattles (2 for a baby
and 2 for a parent) and asked to use them in a play with infant
for 4-5 minutes. In task 2, the dyads were given a set of age-
appropriate toys (stuffed teddy bear, puppet, plush fruits,
children’s books, rattles, teething toys, and colorful rubber
blocks) and the caregiver was asked to play with their infant as
they usually do at home for 10 min. Infants’ position was not
constrained with any positioning device in this task to provide a
more naturalistic set-up.

In both tasks, the caregiver was asked to clap at the
beginning to mark the start of the recording, which allowed for
synchronization of wearable motion trackers with audio and
video recording.

C. Sensor Data Acquisition

Infants’ and caregivers’ movements were recorded using 12
wearable motion trackers (MTw Awinda 3DOF, Xsens
Technologies B.V., Enschede, Netherlands) at 40 or 60 Hz. The
motion trackers were synchronized using Awinda Recording &
Docking Station (Xsens Technologies B.V., Enschede,
Netherlands) and operated with MT Manager Software
(Version 4.6.0, Xsens Technologies B.V, Enschede,
Netherlands) running on a computer with Windows 10
(Microsoft, Inc.). All sensors were synchronized within MT
Manager Software. Motion trackers were placed in black textile
pockets attached to soft black straps with Velcro at the ends.
The length of each strap was adjusted to allow for comfortable
positioning on infants' and caregivers' limbs, heads and torsos.
For the current analyses, we focused on the infants’ leg
movements (1 sensor on each ankle); however, straps with
sensors were also placed on the infants’ arms (1 sensor just
above each wrist), head (1 sensor on the side of the head) and
torso (1 sensor in the middle, 1 on the left side). Caregivers had
1 sensor placed on each arm (just above each wrist), 1 on the
head and 2 on the torso (1 sensor in the middle, 1 on the left
side).

The data from IMUs was converted into two time series.
First, we collapsed the three-dimensional information from the
IMUs to a one-dimensional overall acceleration time series by
calculating the magnitude of acceleration for each three-



dimensional data point. Second, since the IMUs contain
magnetometers, we also calculated quaternions, which offer a
robust estimation of changes in orientation.

D. Deeplabcut

To extract movement from the videos, we used an open-source
toolbox called Deeplabcut (DLC) that builds on a state-of-the-
art pose estimation algorithm (a computer vision technique that
predicts and tracks the location of a person, animal, or object) to
precisely track user-defined body parts [16]. DLC uses transfer
learning (i.e., the ability to take a network that has been trained
on one task to perform another) and an ‘extremely deep neural
network’ [16] which leads to a relatively small amount of data
required to train the model. We manually labelled the location
where the sensors were placed on each participant (see section
II.C and Figure 1 for an example). In those cases where the
sensors were not visible, the same task was labelled again using
a different camera view.

Two hundred frames were labelled for each video (~1% of the
total number of frames) and the algorithm was trained for
600.000 using supercomputing resources (GPU Nvidia Tesla
K40 XL at the Akademickie Centrum Komputerowe Cyfronet
AG, Krakow, Poland). We used 200 frames because previous
studies have shown that even a small number is sufficient to
obtain good performance [17]. After the training was finished,
the algorithm was used to estimate the coordinates for the
remaining frames. Before the analysis, the data were filtered
using a 1-dimensional median filter with a window size of 7 to
avoid 1-time-point-outliers (e.g., errors in the tracking) for each
coordinate. DLC returned a set of coordinates for each tracked
body part. To quantify movement, we calculated the Euclidean
distance between the x and y coordinates of consecutive frames
for tracked body parts.

Figure 1. Example of DLC labelling. The user-defined body
parts are represented with color dots of 8-pixel radius. The
parent gave written consent for the publication of the picture.

E. Data Analysis

Prior to the analysis, the DLC and manually coded
data were resampled to match the sensors’ frequency. Since
sensor and video data were not in synchrony, we used clapping
at the beginning of each task to find the lag between video and
wearable systems. First, we manually coded each clap in a
frame-by-frame manner using ELAN software [19]. The times
series were categorized as | during the duration of the clap and
0 otherwise. Second, we categorized the DLC and sensor
movement time series using a median split, where values larger
than the median were categorized as 1 and smaller as 0. Finally,
we used cross-lag recurrence quantification analysis (CRQA,
[13]) to find the delay between the coded clapping and the
categorized sensor movement data. Negative delay values
meant that the sensors were turned on earlier than the video
acquisition. In this case, the categorized movement time series
derived from videos (DLC and manually coded time series)
were zero padded at the beginning for as many seconds as the
delay represented and the equivalent length was removed at the
end. However, if the delay was positive (i.e., video turned on
earlier), the time series were zero-padded at the end, and the
equivalent length was removed at the beginning of the time
series.

Next, we computed the Pearson correlation coefficients
between the time-aligned sensor and DLC time series. To test
that the correlations do not arise by chance, we also calculate the
cross-correlations between randomized time series. The
correlation between two time series as a single number may be
uncorrelated on short timescales due to noise but strongly
correlated on larger wavelengths. Thus, we plotted the
semblance, which is the correlation as a function of both time
and wavelength and it varies both as a function of time, and of
frequency [20]. In this plot, correlated values are plotted in red
(correlation =1) and anticorrelated in blue (correlation = -1).

III. RESULTS

A. Deeplabcut

DLC was able to track the labelled body parts with high
precision in all the videos with a small training error in both
tasks, which highlights the high accuracy of the algorithm (see
descriptives in Table 1). The higher error in Task 2 is probably
due to the infants’ position not being as restricted in movement
as in Task I, but given the high resolution of the videos in
pixels, the efficiency of the algorithm is remarkably high.

TABLE 1. DEEPLABCUT ERROR DESCRIPTIVES. THE VALUES ARE GIVEN
IN NUMBER OF PIXELS.
DeepLabCut Descriptives
Task 1 Task 2

Training 220+.12 220%1
Error [1.85-2.37] [2.04-2.53]

454+1.20 6.67 +1.77
Test Error [2.73-6.85] [5.14-11.04]




Figure 2. Example of the extracted movement time series for Deeplabcut (red), Acceleration-based (blue) and quaternion (black) data. The time
series has been scaled to facilitate visualization. This example presents selected 55 sec for left hand movements of one of the participants.
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B. Cross-Validation Analysis

Figure 2 shows an example 55 sec of the obtained time
series for the left hand of one of the participants. Visual
inspection of the plots suggests that all the time series present
good agreement in the movement estimation. To find out the
similarity between them, we compared statistically the time
series using Pearson correlation analysis performed for each
participant. DLC time series significantly correlated for both
legs (all ps <.001) with both the acceleration-based measures
(mean Pearson coefficient for the left leg: rien = .19 +.09, [.12
—.36]; mean for the right leg: rrign: = .18 £.12, [.12 —.37]) and
the quaternions (ries = .21 = .11, [.12 - .40]; rrigne = .18 = .11,
[.12 — .39]). For control purposes we calculated correlation
coefficients for the randomized time series. No significant
correlations were obtained (all ps > .05) either for the
acceleration-based measures (mean for the left leg: 7 = .02 +
.02; [.00 — .07], mean for the right leg: rrign: = .02 .02, [.01 —
.06)) or for quaternions (rier = .02 .02, [.00 — .07]; Fright =, =
.02 +.01, [.00 —.05]).

Next, we tested the possibility that the correlations were
affected by the fact that the time series were not fully
synchronised. A Matlab xcorr function was used to find the
alignment between the DLC and sensor time series, which
produces the maximum correlation coefficients. This analysis
showed that there was on average a delay of (delayier = .143 +
.04, [.06 — .16]; delayrign,= .141 £ .05 [.01 - .166]) where the

maximum correlation was found between DLC and both
acceleration based measures (7 = .43 = .09, [0.36 — 0.67],
rrighe = .38 £ .10, [.31 — .64]) and quaternions (7 = .45 £ .10,
[.37 — .67], rrigie =.,41 £ .10, [.33 — .67]). This suggests that
even when the alignment was performed, a residual lag was still
present between the DLC and sensor time series.

Finally, to better explain the effect of noise on our
correlations, we estimated the change in the correlation in time
and frequency for one sample time series. Figure 3 shows an
example of a semblance plot for the time series for DLC and
acceleration-based measures presented in Figure 2. Higher
correlations were observed at higher frequencies, which
suggests an additional influence of low frequency noise on the
measurement of leg movements.

IV. DIscussioN

Recent progress in computer vision has led to the
development of many excellent tools to analyze movement from
the video (e.g., [11-12]). In the present paper we used
Deeplabcut [16], which allows the tracking of user-defined body
parts, to estimate movement from 2D videos and compared it
with data extracted from wearables. Cross-correlation analysis
showed comparable results among all time series, which
suggests that computer vision might be a good alternative to the
sometimes-expensive wearable systems.



It is worth emphasizing that the DLC showed remarkable
accuracy in both tasks. This was achieved by labelling only 200
frames (~1% of the total number of frames in a video), which
highlights the robustness of the method. Additionally, DLC is
easy to set up, use and less likely to be subjective (see Manual
in [17]), whereas methods such as manual coding require
extensive training in the coding scheme to achieve high inter-
rater reliability and time-consuming coding by multiple coders.
Additionally, the DLC, as well as IMUs, are more precise in
finding subtle changes in comparison to manual annotation, so
they may offer a solution for identifying individual movements
and estimating their onsets and offsets even for the shortest ones.

We tested the feasibility of DLC in two different infant-
parent interactive situations: a structured play task with body
movement partially restricted by seating (Task 1) and an
unstructured free-play situation (Task 2). We have found a
higher error in the free-play Task 2, which could be related to
the fact that infants were moving freely, without constrains of
the chair. However, even in this more naturalistic and
unconstrained set-up the error was sufficiently low given the
resolution of the video. Altogether, the DLC was robustly

Figure 3 Example of the semblance plot for the time series
example shown in Figure 2. At higher frequencies (black box) the time
series show strong correlations (red) which contrast with the
variability showed at shorter frequencies. Anticorrelations are
represented by a blue color. These results are consistent for all
children.
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measuring infant leg movement across both tasks, although
further analyses are needed to test it across a wider range of
situational contexts, e.g., outdoor spaces.

When comparing the leg movements detected by the DLC
and the IMUs, we found statistically significant, moderate
correlations between the time series. Control analyses for
randomized time series did not show any significant
correlations. Although this suggests that the DLC and IMUs may
differently measure the magnitude of movement, we consider
these results promising. We discuss several reasons for finding
only moderate correlations between different methods. First,
video and sensor data were not automatically synchronized. We

asked parents to clap at the beginning of each task, and we use
cross-recurrence lag analysis to find the delay between both time
series. However, although it worked sufficiently well (see Figure
2 for an example), it does not guarantee that both time series
were perfectly aligned, which could introduce some
discrepancies between time series. In fact, additional analyses
showed larger correlations found at slightly different lags
suggesting a lack of full synchrony among time series. Second,
when missing data was present either in the DLC or the IMU
data, a linear interpolation was performed to fill the gaps in
every time series. If those missing data happen in both time
series at once, some movement instances might not be present
in any of the time series. As a result, the time series may look
more dissimilar than they really are. Finally, the error in pixels
that the DLC returns could also have influenced the accuracy of
the estimation of movement. Larger errors would lead to higher
variability in the estimation of movement and higher noise being
present, therefore affecting our DLC-IMUs correlations (see
Figure 3). However, we believe that despite these limitations,
these results are very promising. Some of these issues could be
solved with a higher number of labelled frames or by manually
refining labels that were wrongly estimated to train the
algorithm again [16]. Another route to improvement would be
building a system where video and sensor data acquisitions are
synchronised. Thus, further analyses are needed to
systematically tackle this issue and test its effects on the final
movement data.

However, there are also some aspects of the estimation of
movement that cannot be easily assessed in automatic way using
neither IMUs nor the DLC, and in these cases manual annotation
could still provide the most reliable information. For example,
episodes during physical contact between the infant and the
caregiver are challenging to analyze automatically. For example,
when the infant is being held, the data is affected both by infant-
generated movements and passive movements of the infant
induced by the caregiver (see [21] for an attempt to solve this
problem using IMUs). Similarly, when the caregiver is moving
the infant’s limbs during play, it is difficult to disentangle
between spontaneous and induced movements.

Our results should be interpreted with some caution, as we
note several limitations. First, the number of participants in our
preliminary study was low, which suggests a need for
replication. Second, the infants included in the study were young
(aged 4-5 months) and not yet very mobile, so further validation
is needed in additional tasks and with older infants who have a
larger motor repertoire. Third, the DLC requires strong
computational power to run (i.e., GPUs), which not everybody
may have access to, so it is not readily accessible for the use in
low-resource settings. Fourth, we assessed the effectiveness of
only one computer vision algorithm and additional computer
vision algorithms (e.g., Open Pose) are needed to further
validate the data. Finally, the DLC was applied on 2D video data
while IMUs gather data in 3D space. This made the detection of
orientation changes more challenging, and it is likely why DLC
had better agreement with acceleration-based data than with
quaternions. However, with prior knowledge of the calibration



parameters of the cameras, videos from several camera angles
can also be combined to obtain a 3D representation of the
movement of the entire body ([22]). Thus, further studies should
focus on cross-validating 3D video data with 3D accelerometer
data to determine to which extend computer vision can provide
accurate movement estimates.

CONCLUSIONS

With the emergence and rapid evolution of various motion
capture technologies, such as wearables and computer vision
methods, we can observe and detect very subtle motor behaviors
of infants and adults alike. Precise and unobtrusive methods that
continuously record multiple behaviors are necessary to
understand the emergence of those behaviors. In this study we
showed that both computer vision and wearable sensors provide
comparable quantitative data on infants’ movements. Therefore,
movement-based video analysis lends itself as a cheap, reliable
and unobtrusive alternative for measuring the dynamics of body
movement of young infants in naturalistic social interactions.
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