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Abstract—Recent progress in the study of infant motor 
development has been achieved by ground-breaking paradigm 
shifts combined with clever and innovative tasks that place the 
infant center stage as the acting subject. One of the challenges that 
developmental scientists are facing today is understanding the 
complexity of infants’ spontaneous movements. Novel methods 
such as wearables and computer vision methods have the potential 
to revolutionize the measurement of infants’ motor behavior in 
various situational and social contexts. However, a comparison 
between any computer method and wearables data has not been 
carried out so far in this age group for spontaneous behavior 
during social interactions with a caregiver. In this paper, we 
compare the results of Deeplabcut, an algorithm for tracking user-
defined body parts, with simultaneously acquired wearable data 
and show that computer vision can be a good alternative to 
advanced wearable systems.  

Keywords—Computer Vision, IMUs, wearables, DeepLabcut, 
infant movement  

I. INTRODUCTION  
The development of human motor behavior involves 

learning through practice as infants improve their skills over 
time. Changes in behavior take place across long periods of time 
(days, weeks, or months). Being able to capture constituent 
movements in detail across longer timeframes in multiple 
situations may help us discover developmental trajectories of 
emerging motor skills [1]. Standardized assessments of motor 
milestones, which assume a specific order or progression and 
age of acquisition, cannot reliably capture the complexity of 
infant development. To achieve this goal, a large variety of 
sophisticated, lab-based methods and experimental designs have 
been used for many decades (e.g., instrumented floors, 
treadmills, force plates, video), but thanks to recent advances in 
technology, we are now able to characterize infants’ spontaneous 

movements with much higher accuracy and less manual labor. 
New technologies, like small wearable sensors and computer 
vision for analyzing movement in video recordings may greatly 
facilitate the measurement of infants' natural activity.  

Wearable motion trackers are now available in a wide 
variety of choices ranging from basic accelerometers to the 
more advanced Inertial Motion Units (IMUs), and they can be 
even found in the forms of miniature sensors embedded in baby 
suits (e.g., [2]). Simple accelerometers measure the 3-
dimensional (3D) acceleration (the rate of change in velocity of 
an object) of a body part, so they can be used, for example, to 
explore infants’ physical activity and sedentary behaviors 
across daytime hours (see review by [3]). More advanced IMUs 
typically combine accelerometers and gyroscopes with 
magnetometers that measure the strength and direction of the 
Earth-magnetic field. By using a biomechanical model of the 
human body (see more details in [4]) or additional information 
from magnetometers (e.g., [5]), we can even track the dynamic 
motion and estimate the orientation and position changes of 
body segments in 3D.  

Wearable motion trackers can precisely detect subtle 
changes in infants’ postures and body movements that are not 
easy to perceive with the naked age, but they do not yet offer a 
complete or easily deployable solutions for developmental 
research. They are expensive, the weight and size of the 
currently available ones may not be suitable for the youngest 
infants and newborns, they may be difficult to use with some 
clinical populations (e.g., infants with sensory difficulties who 
may be irritated by additional weight on limbs), and the 
majority of promising results come mostly from proof-of-
concept studies (e.g., [6-7]). Thus, video-based measurement is 
still considered the gold standard in infant studies because it is 
the only tool able to capture the richness and complexity of 



behaviors as well as the details of the surrounding context (e.g., 
[1]). Available for almost a century (e.g., [8]), it can be used to 
study infant behavior across long periods of time (days, weeks, 
or months), and it is increasingly available through multiple 
devices (e.g., smartphones, cameras). Video recordings reveal 
the physical and social context in which a behavior occurs; they 
are inexpensive, readily accessible and provide a potentially 
unobtrusive way of recording infants' behavior in their natural 
environment (e.g., [9]), and may even serve as a representation 
of an infant’s field of view when head-mounted cameras are 
used (e.g., [10]). However, as technology improves, the amount 
of data also increases. The analysis of longer and more complex 
recordings of infants’ natural activity requires laborious and 
costly manual coding. Unsurprisingly, this has recently led to 
the development of many new tools for automatic tracking of 
human posture (e.g., Deep Pose [11]; OpenPose [12]). One 
major advantage is that they enable the use of videos recorded 
for other purposes or available in open repositories to conduct 
large-scale analyses ([1]). Additionally, these tools are 
predominantly open-source and freely available, which makes 
them the most affordable of the methods for tracking infant 
movement. However, studies carried out so far used 2D 
previously recorded videos (e.g., [13-15]), where the infant was 
in a clear view, which leaves open (1) the accuracy of 
estimation in complex environments and (2) the utility of these 
methods in multi-person settings such as parent-infant 
interactions. 

Developmental scientists are in need of cheap, reliable and 
unobtrusive methods for measuring the dynamics of body 
movement of young infants in naturalistic social interactions. 
Current wearable methods have limitations on their use across 
contexts and age groups. We aimed to test the reliability of 
computer vision methods as an alternative for studying 
spontaneous motor behavior of young infants. To this end, we 
compared the reliability of movement estimation between 
Deeplabcut (DLC) [16], a pose-estimation computer vision 
algorithm that predicts and tracks the location of a person, 
animal or object and allows the tracking of user-defined body 
parts, and IMU wearable data. The amount of computer vision 
methods to quantify movements has increased over the last 
decade [17,18], but we chose DLC due to its flexibility which 
allows the user to define what should be tracked and does not 
rely on a predefined skeleton. We show that video-based 
analyses can provide a good movement estimate of individual 
limbs of young infants in different interactive tasks, when 
compared against data collected with advanced IMUs. 

II. MATERIALS AND METHODS 
A. Participants 

A total of 12 healthy, full-term (36 gestational weeks or 
more) infants at the age of 4 to 5 months (M = 4.49, SD = 0.22) 
contributed data for the analysis. Participants came from 
predominantly middle-class families living in the city with >1.5 
million inhabitants. The study was approved by the local ethics 
committee and conformed to the standards of the Declaration of 
Helsinki. Prior to the testing, all parents gave written informed 

consent. For their participation, the families received a diploma 
and a small gift (a baby book). 

B. Procedure 
During lab visit, dyads of parents and infants participated in 

several semi-structured interactions with age-appropriate toys. 
Interactions were recorded in a laboratory room, in a carpeted 
play area, using three remote-controlled CCTV color cameras in 
HD quality with a 1920x1080 resolution at 25 Hz. During the 
interaction, one experimenter operated the cameras (this 
included zooming in and out as well as moving cameras 
vertically and horizontally) to ensure that at least one camera 
captured the infant’s behavior and one camera captured the 
parent’s behavior. In this paper, we compare data from two tasks 
varying in demands: play with rattles (Task 1) and free play 
(Task 2). Task 1 was a semi-structured play: the infant was 
placed in a baby bouncer (N = 9) or, in case of refusal, on the 
floor (N = 3). The dyad was provided with 4 rattles (2 for a baby 
and 2 for a parent) and asked to use them in a play with infant 
for 4-5 minutes. In task 2, the dyads were given a set of age-
appropriate toys (stuffed teddy bear, puppet, plush fruits, 
children’s books, rattles, teething toys, and colorful rubber 
blocks) and the caregiver was asked to play with their infant as 
they usually do at home for 10 min. Infants’ position was not 
constrained with any positioning device in this task to provide a 
more naturalistic set-up. 

In both tasks, the caregiver was asked to clap at the 
beginning to mark the start of the recording, which allowed for 
synchronization of wearable motion trackers with audio and 
video recording. 

C. Sensor Data Acquisition 
Infants’ and caregivers’ movements were recorded using 12 

wearable motion trackers (MTw Awinda 3DOF, Xsens 
Technologies B.V., Enschede, Netherlands) at 40 or 60 Hz. The 
motion trackers were synchronized using Awinda Recording & 
Docking Station (Xsens Technologies B.V., Enschede, 
Netherlands) and operated with MT Manager Software 
(Version 4.6.0, Xsens Technologies B.V, Enschede, 
Netherlands) running on a computer with Windows 10 
(Microsoft, Inc.). All sensors were synchronized within MT 
Manager Software. Motion trackers were placed in black textile 
pockets attached to soft black straps with Velcro at the ends. 
The length of each strap was adjusted to allow for comfortable 
positioning on infants' and caregivers' limbs, heads and torsos. 
For the current analyses, we focused on the infants’ leg 
movements (1 sensor on each ankle); however, straps with 
sensors were also placed on the infants’ arms (1 sensor just 
above each wrist), head (1 sensor on the side of the head) and 
torso (1 sensor in the middle, 1 on the left side). Caregivers had 
1 sensor placed on each arm (just above each wrist), 1 on the 
head and 2 on the torso (1 sensor in the middle, 1 on the left 
side). 

The data from IMUs was converted into two time series. 
First, we collapsed the three-dimensional information from the 
IMUs to a one-dimensional overall acceleration time series by 
calculating the magnitude of acceleration for each three-



dimensional data point. Second, since the IMUs contain 
magnetometers, we also calculated quaternions, which offer a 
robust estimation of changes in orientation. 

D. Deeplabcut 
To extract movement from the videos, we used an open-source 
toolbox called Deeplabcut (DLC) that builds on a state-of-the-
art pose estimation algorithm (a computer vision technique that 
predicts and tracks the location of a person, animal, or object) to 
precisely track user-defined body parts [16]. DLC uses transfer 
learning (i.e., the ability to take a network that has been trained 
on one task to perform another) and an ‘extremely deep neural 
network’ [16] which leads to a relatively small amount of data 
required to train the model. We manually labelled the location 
where the sensors were placed on each participant (see section 
II.C and Figure 1 for an example). In those cases where the 
sensors were not visible, the same task was labelled again using 
a different camera view. 
Two hundred frames were labelled for each video (~1% of the 
total number of frames) and the algorithm was trained for 
600.000 using supercomputing resources (GPU Nvidia Tesla 
K40 XL at the Akademickie Centrum Komputerowe Cyfronet 
AG, Krakow, Poland). We used 200 frames because previous 
studies have shown that even a small number is sufficient to 
obtain good performance [17]. After the training was finished, 
the algorithm was used to estimate the coordinates for the 
remaining frames. Before the analysis, the data were filtered 
using a 1-dimensional median filter with a window size of 7 to 
avoid 1-time-point-outliers (e.g., errors in the tracking) for each 
coordinate. DLC returned a set of coordinates for each tracked 
body part. To quantify movement, we calculated the Euclidean 
distance between the x and y coordinates of consecutive frames 
for tracked body parts.  

 

Figure 1. Example of DLC labelling. The user-defined body 
parts are represented with color dots of 8-pixel radius. The 

parent gave written consent for the publication of the picture. 
 

 
 

E. Data Analysis  
 

 Prior to the analysis, the DLC and manually coded 
data were resampled to match the sensors’ frequency. Since 
sensor and video data were not in synchrony, we used clapping 
at the beginning of each task to find the lag between video and 
wearable systems. First, we manually coded each clap in a 
frame-by-frame manner using ELAN software [19]. The times 
series were categorized as 1 during the duration of the clap and 
0 otherwise. Second, we categorized the DLC and sensor 
movement time series using a median split, where values larger 
than the median were categorized as 1 and smaller as 0. Finally, 
we used cross-lag recurrence quantification analysis (CRQA, 
[13]) to find the delay between the coded clapping and the 
categorized sensor movement data. Negative delay values 
meant that the sensors were turned on earlier than the video 
acquisition. In this case, the categorized movement time series 
derived from videos (DLC and manually coded time series) 
were zero padded at the beginning for as many seconds as the 
delay represented and the equivalent length was removed at the 
end. However, if the delay was positive (i.e., video turned on 
earlier), the time series were zero-padded at the end, and the 
equivalent length was removed at the beginning of the time 
series.  

Next, we computed the Pearson correlation coefficients 
between the time-aligned sensor and DLC time series. To test 
that the correlations do not arise by chance, we also calculate the 
cross-correlations between randomized time series. The 
correlation between two time series as a single number may be 
uncorrelated on short timescales due to noise but strongly 
correlated on larger wavelengths. Thus, we plotted the 
semblance, which is the correlation as a function of both time 
and wavelength and it varies both as a function of time, and of 
frequency [20]. In this plot, correlated values are plotted in red 
(correlation =1) and anticorrelated in blue (correlation = -1). 

III. RESULTS 

A. Deeplabcut 
DLC was able to track the labelled body parts with high 

precision in all the videos with a small training error in both 
tasks, which highlights the high accuracy of the algorithm (see 
descriptives in Table 1). The higher error in Task 2 is probably 
due to the infants’ position not being as restricted in movement 
as in Task 1, but given the high resolution of the videos in 
pixels, the efficiency of the algorithm is remarkably high. 

TABLE I.  DEEPLABCUT ERROR DESCRIPTIVES. THE VALUES ARE GIVEN 
IN NUMBER OF PIXELS. 

 
DeepLabCut Descriptives 

Task 1 Task 2 

Training 
Error 

2.20 ± .12 

[1.85-2.37] 

2.26 ± .14 

[2.04-2.53] 

 

Test Error 
4.54 ± 1.20 

[2.73-6.85] 

6.67 ± 1.77 

[5.14-11.04] 

 



B. Cross-Validation Analysis 
 

Figure 2 shows an example 55 sec of the obtained time 
series for the left hand of one of the participants. Visual 
inspection of the plots suggests that all the time series present 
good agreement in the movement estimation. To find out the 
similarity between them, we compared statistically the time 
series using Pearson correlation analysis performed for each 
participant. DLC time series significantly correlated for both 
legs (all ps < .001) with both the acceleration-based measures 
(mean Pearson coefficient for the left leg: rleft = .19 ± .09, [.12 
– .36]; mean for the right leg: rright = .18 ± .12, [.12 – .37]) and 
the quaternions (rleft = .21 ± .11, [.12 - .40]; rright = .18 ± .11, 
[.12 – .39]). For control purposes we calculated correlation 
coefficients for the randomized time series. No significant 
correlations were obtained (all ps > .05) either for the 
acceleration-based measures (mean for the left leg: rleft = .02 ± 
.02; [.00 – .07], mean for the right leg: rright = .02 ± .02, [.01 – 
.06]) or for quaternions (rleft = .02 ± .02, [.00 – .07];  rright = , = 
.02 ± .01, [.00 – .05]). 

Next, we tested the possibility that the correlations were 
affected by the fact that the time series were not fully 
synchronised. A Matlab xcorr function was used to find the 
alignment between the DLC and sensor time series, which 
produces the maximum correlation coefficients. This analysis 
showed that there was on average a delay of (delayleft = .143 ± 
.04, [.06 – .16]; delayright,= .141 ± .05 [.01 - .166]) where the 

maximum correlation was found between DLC and both 
acceleration based measures (rleft = .43 ± .09, [0.36 – 0.67],  
rright = .38 ± .10, [.31 – .64]) and quaternions (rleft = .45 ± .10, 
[.37 – .67],  rright =.,41 ± .10, [.33 – .67]). This suggests that 
even when the alignment was performed, a residual lag was still 
present between the DLC and sensor time series. 
 Finally, to better explain the effect of noise on our 
correlations, we estimated the change in the correlation in time 
and frequency for one sample time series. Figure 3 shows an 
example of a semblance plot for the time series for DLC and 
acceleration-based measures presented in Figure 2. Higher 
correlations were observed at higher frequencies, which 
suggests an additional influence of low frequency noise on the 
measurement of leg movements. 

 

IV. DISCUSSION 
Recent progress in computer vision has led to the 

development of many excellent tools to analyze movement from 
the video (e.g., [11-12]). In the present paper we used 
Deeplabcut [16], which allows the tracking of user-defined body 
parts, to estimate movement from 2D videos and compared it 
with data extracted from wearables. Cross-correlation analysis 
showed comparable results among all time series, which 
suggests that computer vision might be a good alternative to the 
sometimes-expensive wearable systems. 

Figure 2. Example of the extracted movement time series for Deeplabcut (red), Acceleration-based (blue) and quaternion (black) data. The time 
series has been scaled to facilitate visualization. This example presents selected 55 sec for left hand movements of one of the participants. 

 



It is worth emphasizing that the DLC showed remarkable 
accuracy in both tasks. This was achieved by labelling only 200 
frames (~1% of the total number of frames in a video), which 
highlights the robustness of the method. Additionally, DLC is 
easy to set up, use and less likely to be subjective (see Manual 
in [17]), whereas methods such as manual coding require 
extensive training in the coding scheme to achieve high inter-
rater reliability and time-consuming coding by multiple coders. 
Additionally, the DLC, as well as IMUs, are more precise in 
finding subtle changes in comparison to manual annotation, so 
they may offer a solution for identifying individual movements 
and estimating their onsets and offsets even for the shortest ones.  

We tested the feasibility of DLC in two different infant-
parent interactive situations: a structured play task with body 
movement partially restricted by seating (Task 1) and an 
unstructured free-play situation (Task 2). We have found a 
higher error in the free-play Task 2, which could be related to 
the fact that infants were moving freely, without constrains of 
the chair. However, even in this more naturalistic and 
unconstrained set-up the error was sufficiently low given the 
resolution of the video. Altogether, the DLC was robustly 

measuring infant leg movement across both tasks, although 
further analyses are needed to test it across a wider range of 
situational contexts, e.g., outdoor spaces. 

When comparing the leg movements detected by the DLC 
and the IMUs, we found statistically significant, moderate 
correlations between the time series. Control analyses for 
randomized time series did not show any significant 
correlations. Although this suggests that the DLC and IMUs may 
differently measure the magnitude of movement, we consider 
these results promising. We discuss several reasons for finding 
only moderate correlations between different methods. First, 
video and sensor data were not automatically synchronized. We 

asked parents to clap at the beginning of each task, and we use 
cross-recurrence lag analysis to find the delay between both time 
series. However, although it worked sufficiently well (see Figure 
2 for an example), it does not guarantee that both time series 
were perfectly aligned, which could introduce some 
discrepancies between time series. In fact, additional analyses 
showed larger correlations found at slightly different lags 
suggesting a lack of full synchrony among time series. Second, 
when missing data was present either in the DLC or the IMU 
data, a linear interpolation was performed to fill the gaps in 
every time series. If those missing data happen in both time 
series at once, some movement instances might not be present 
in any of the time series. As a result, the time series may look 
more dissimilar than they really are. Finally, the error in pixels 
that the DLC returns could also have influenced the accuracy of 
the estimation of movement. Larger errors would lead to higher 
variability in the estimation of movement and higher noise being 
present, therefore affecting our DLC-IMUs correlations (see 
Figure 3). However, we believe that despite these limitations, 
these results are very promising. Some of these issues could be 
solved with a higher number of labelled frames or by manually 
refining labels that were wrongly estimated to train the 
algorithm again [16]. Another route to improvement would be 
building a system where video and sensor data acquisitions are 
synchronised. Thus, further analyses are needed to 
systematically tackle this issue and test its effects on the final 
movement data. 

However, there are also some aspects of the estimation of 
movement that cannot be easily assessed in automatic way using 
neither IMUs nor the DLC, and in these cases manual annotation 
could still provide the most reliable information. For example, 
episodes during physical contact between the infant and the 
caregiver are challenging to analyze automatically. For example, 
when the infant is being held, the data is affected both by infant-
generated movements and passive movements of the infant 
induced by the caregiver (see [21] for an attempt to solve this 
problem using IMUs). Similarly, when the caregiver is moving 
the infant’s limbs during play, it is difficult to disentangle 
between spontaneous and induced movements.  

Our results should be interpreted with some caution, as we 
note several limitations. First, the number of participants in our 
preliminary study was low, which suggests a need for 
replication. Second, the infants included in the study were young 
(aged 4-5 months) and not yet very mobile, so further validation 
is needed in additional tasks and with older infants who have a 
larger motor repertoire. Third, the DLC requires strong 
computational power to run (i.e., GPUs), which not everybody 
may have access to, so it is not readily accessible for the use in 
low-resource settings. Fourth, we assessed the effectiveness of 
only one computer vision algorithm and additional computer 
vision algorithms (e.g., Open Pose) are needed to further 
validate the data. Finally, the DLC was applied on 2D video data 
while IMUs gather data in 3D space. This made the detection of 
orientation changes more challenging, and it is likely why DLC 
had better agreement with acceleration-based data than with 
quaternions. However, with prior knowledge of the calibration 

Figure 3 Example of the semblance plot for the time series 
example shown in Figure 2. At higher frequencies (black box) the time 

series show strong correlations (red) which contrast with the 
variability showed at shorter frequencies. Anticorrelations are 
represented by a blue color. These results are consistent for all 

children. 

 

 



parameters of the cameras, videos from several camera angles 
can also be combined to obtain a 3D representation of the 
movement of the entire body ([22]). Thus, further studies should 
focus on cross-validating 3D video data with 3D accelerometer 
data to determine to which extend computer vision can provide 
accurate movement estimates. 
 

CONCLUSIONS 
With the emergence and rapid evolution of various motion 

capture technologies, such as wearables and computer vision 
methods, we can observe and detect very subtle motor behaviors 
of infants and adults alike. Precise and unobtrusive methods that 
continuously record multiple behaviors are necessary to 
understand the emergence of those behaviors. In this study we 
showed that both computer vision and wearable sensors provide 
comparable quantitative data on infants’ movements. Therefore, 
movement-based video analysis lends itself as a cheap, reliable 
and unobtrusive alternative for measuring the dynamics of body 
movement of young infants in naturalistic social interactions. 
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